msgbartop
¡Pocoyízate, Borja, pocoyízate!
msgbarbottom

20 feb 17 Mejoras en el sistema de telemetría

Este fin de semana he estado con Ana y unos amigos en Waterford. Ha sido la oportunidad perfecta para probar el sistema de telemetría. Y la verdad es que se ha portado de fábula. Como muestra, un botón:

Como se puede apreciar, la recogida de datos funcionó a la perfección durante las dos hora de viaje desde Dublín a Waterford. Por ello, me he decidido a realizar algunas modificaciones en el sistema de telemetría:

  • Recogida de parámetros adicionales: Hasta ahora recogía 3 valores de la centralita del coche: velocidad, revoluciones por minuto y flujo de aire entrante en el motor, este último, junto con la velocidad, para realizar el cálculo del consumo de combustible. Ahora voy a pasar a recoger 14 parámetros en total, que son los que proporciona la centralita del coche. En otros vehículos más modernos se pueden recoger muchos más parámetros, pero por el momento tengo información más que suficiente de múltiples valores: temperaturas, sensores de depósito, % de potencia utilizada, % de recorrido del acelerador… El detalle de los parámetros recogidos es el siguiente:
    PIDs OBD II Mercedes W203

    PIDs OBD II Mercedes W203

  • Modificación en la frecuencia de recogida de valores: Dado que paso a recoger más parámetros, y anteriormente he tenido problemas de uso del canal de comunicación Bluetooth, voy a reducir la frecuencia de recogida de valores desde los 2 segundos a los 5. Si el sistema se sigue mostrando estable, consideraré volver a recoger valores cada 2 segundos.
  • Cálculo de distancia recorrida: Uno de los valores que la centralita no proporciona es la distancia recorrida. Así que he introducido el cálculo de la misma, basado en los datos proporcionados por el sensor GPS.
  • (En desarrollo) Incorporación de acelerómetros: De nuevo, un valor no proporcionado por la centralita. En este caso, se trata de medir la aceleración del vehículo en los ejes X, Y y Z. La centralita no los proporciona, y la Raspberry Pi tampoco. Así que he encargado un acelerómetro con giróscopos incorporados, que proporcionará información a través del los puertos GPIO de la RPi.
VN:F [1.9.20_1166]
Rating: 0.0/10 (0 votes cast)

Etiquetas: , ,

29 ene 17 Sistema de telemetría y geoposicionamiento para vehículos

Escribía en mi entrada anterior que estaba trabajando en un sistema de telemetría para el Mercedes. Durante estas últimas semanas he estado realizando algunas mejoras en el sistema, y si bien aún es posible incorporar algunas más, en este momento ya empieza a tener un desarrollo bastante definido. En pocas palabras, se trata de un sistema de telemetría que recoge datos de dos fuentes, la centralita del coche y un módulo GPS, para transmitirlo a un servidor donde se almacenan los datos para su posterior tratamiento. En este momento, el tratamiento consiste en dos actividades: representación gráfica de velocidad, revoluciones por minuto y consumo del coche, y geoposicionamiento en mapas en tiempo real. Este es un esquema básico de la plataforma:

Esquema del sistema de telemetría

Esquema del sistema de telemetría

El sistema está compuesto por los siguientes elementos:

  • Sonda de captura de datos: La sonda de captura de datos consiste en una Raspberry Pi que se conecta con la centralita del coche mediante un módulo bluetooth. La centralita del coche se ha equipado, a su vez, con un módulo OBD-II con bluetooth. Esta sonda, de igual manera, dispone de un módulo GPS para proporcionar datos relativos a la posición del vehículo.
  • Programa de telemetría: En la sonda de posicionamiento he desplegado un programa que recopila información de las fuentes anteriores, que he desarrollado en Python. Este programa, en líneas generales, comprueba el estado de las fuentes de datos antes mencionados, recopila la información y la prepara para su transmisión. Para ello, se apoya en un broker MQTT instalado en la propia sonda. Por último, se hace un almacenado local en ficheros csv de la información recopilada, junto con una marca de tiempo.
  • Broker MQTT local: Para realizar la transmisión de datos al servidor de almacenamiento y procesado de datos se hace uso de un broker MQTT local. MQTT es un protocolo ligero de mensajería para pequeños sensores y dispositivos móviles ideado por IBM. Está optimizado para realizar la transmisión de datos incluso en redes no confiables y en entornos de alta latencia, por lo que es ideal para delegar en él la capa de transmisión de datos del programa anterior, ya que es presumible que el vehículo pueda encontrarse en situaciones de escasa cobertura o incluso pérdida total de la misma, además de en situaciones en las que la transmisión de datos haya de efectuarse haciendo uso de redes GSM de escasa capacidad. Además, tiene la ventaja de que produce menos sobrecarga que otros protocolos como HTTP, y (en teoría) hace un menor consumo de datos. La idea es la siguiente: el programa anterior delega en el broker MQTT el establecer el envío de paquetes al servidor. El broker MQTT actúa además como buffer local de los paquetes transmitidos, en caso de pérdida o inestabilidad de las comunicaciones. Este buffer local, gracias a una pequeña base de datos interna, es persistente incluso ante reinicios inesperados de la sonda. El broker MQTT local está sincronizado con otro broker MQTT desplegado en el servidor de recepción de datos, y es capaz de garantizar la correcta sincronización, como se ha comentado, incluso en situaciones de pérdida total de conectividad y reinicios en la sonda de datos.
  • Envío de datos mediante tethering bluetooth: El broker local MQTT es dotado de conectividad a Internet mediante tethering bluetooth con un teléfono móvil. Si bien a priori sería más interesante hacer uso de tethering wifi para esto mismo, hay tres buenas razones para optar por bluetooth: La primera es que al hacer uso de MQTT el volumen de información a intercambiar es bastante reducido, por lo que es posible hacer uso de bluetooth para ello, con el consiguiente impacto positivo en el consumo de energía necesario para establecer el canal de datos. La segunda es una limitación física en la sonda. La Raspberry Pi 2 que utilizo tiene sólo dos puertos USB, uno usado con el módulo GPS y otro con el módulo bluetooth para conectar con la centralita, por lo que no queda sitio para un módulo WiFi. Y la tercera, es que todo es mejor con bluetooth. :mrgreen:
  • Servidor de recepción de datos: El segundo bloque del sistema es el servidor de recepción y análisis de datos. Consiste en líneas generales en un servidor Graphite donde se almacenan los datos proporcionados por la sonda de captura de datos, y que permite su posterior utilización, bien para la representación de gráficas de dichos datos mediante Grafana, bien para la el geoposicionamiento del vehículo en tiempo real, con información añadida del resto de parámetros proporcionados por la sonda.
  • Broker MQTT: La comunicación, como se ha comentado, se realiza mediante un broker MQTT que sincroniza con el broker MQTT de la sonda. Este broker recibe los datos proporcionados por la sonda, y los inyecta, mediante una pasarela desarrollada en Python, en el servidor Graphite. Dado que es posible que la información proporcionada por el broker MQTT de la sonda no se reciba en tiempo real debido a posibles cortes en las comunicaciones, se hace uso de la marca de tiempo incluida en cada transmisión de la sonda remota para inyectar los datos en el servidor Graphite con información de tiempo de creación correcta.
  • Servidor Graphite: El servidor Graphite consolida la información proporcionada por la sonda de captura de datos, la almacena en una sistema de base de datos buffer de corta duración (Carbon) y posteriormente la consolida en una base de datos da larga duración (whisper).
  • Servidor Grafana: Los datos consolidados en el servidor Graphite son consumidos por Grafana, software para visualización de métricas. Se han creado una serie de gráficas que permiten acceder a la información relativa a la velocidad, revoluciones por minuto, entrada de aire en el motor, consumo de combustible y altitud con respecto al mar, así como a sus valores medios en un rango de tiempo establecido. Grafana proporciona, además, la capacidad de integrar estas gráficas en una plataforma de terceros.
  • Captura de posicionamiento de vehículo con datos en tiempo real

    Captura de posicionamiento de vehículo con datos en tiempo real

  • Sistema de geoposicionamiento: El broker MQTT permite, además, el procesamiento de la información proporcionada por la sonda para representar en tiempo real la ubicación geográfica del vehículo, así como la traza de las posiciones anteriores mediante una línea de posición. Además, se proporciona información en tiempo real de los parámetros proporcionados por la sonda. Este sistema está basado en Node-RED, una herramienta desarrollada por IBM para permitir una interconexión sencilla de diversas aplicaciones y dispositivos IoT. También hace uso de OpenStreetMap, mediante la librería WorldMap.

Todo este sistema lo he compilado en la siguente web para su visualización: Telemetría (www.eniac2000.com/telemetria)

Dado que la información mostrada en esa URL proporciona datos en tiempo real, he realizado una captura de datos obtenidos en vivo:

Captura del sistema de telemetría

Captura del sistema de telemetría

…así como un vídeo en el que se aprecia la información, si bien realizando la captura de la información desde las dos fuentes de datos separadas, y no desde el mismo portal:

Como comentaba, el sistema está aún en una fase muy temprana, pero el potencial de mejora es grande. Los principales puntos en los que estoy trabajando son los siguientes:

  • Mejora en la seguridad de comunicaciones entre brokers MQTT
  • Mejora en la fiabilidad de la comunicación OBD-II
  • Reemplazo del sistema de base datos de larga duración de Graphite por un sistema NoSQL, presumiblemente un InfluxDB
  • Dotar de redundancia a los elementos de la plataforma
  • Proporcionar un sistema de persistencia de la información
  • Creación de un portal multiusuario con soporte de múltiples dispositivos
  • Otros… :)

Si bien este proyecto empezó como algo personal, con la idea de comprobar cuánto consumía mi coche en los desplazamientos, tengo el convencimiento de que puede convertirse en algo más que en un mero pasatiempo. Esperemos que así sea.

VN:F [1.9.20_1166]
Rating: 10.0/10 (2 votes cast)

Etiquetas: , , , , , , , , , , , ,

08 ene 17 Sistema de telemetría para el Mercedes

Pues eso. Me he montado un pequeño sistema de telemetría para el Mercedes:

Sistema de telemetría para el Mercedes

Sistema de telemetría para el Mercedes

No es un sistema de Fórmula 1, pero me proporciona datos en tiempo real, accesible por Internet. Otro día escribiré con algo más de tiempo. Pero las palabras claves son: Raspberry Pi, OBD-II, tethering, gps, sockets, Graphite, Grafana y Bluetooth. Porque todo es mejor con Bluetooth. :mrgreen:

VN:F [1.9.20_1166]
Rating: 10.0/10 (1 vote cast)

Etiquetas: , , , , , ,

23 dic 15 Control remoto de sistemas con WhatApp. Yowsup 2

Nuevos avances. La última vez que utilicé WhatsApp como sistema de control remoto (Riego de jardín con WhatsApp y radiofrecuencia) hice uso de la versión 1 de Yowsup, librería de comunicación con WhatsApp escrita en python. Pero algún tiempo después esta primera versión de Yowsup dejó de ser funcional, y aunque tiempo después fue reescrita en una segunda versión, todo el código que había desarrollado para ello no era compatible.

Después de algunos trasteos, y de comprender cómo funciona esta nueva librería, he conseguido volver a hacer operativo el sistema de comunicación. E incluso el código ha quedado bastante más limpio. Recopilemos: se envía desde un terminal móvil un mensaje de control. Este mensaje es recibido gracias a una aplicación que hace uso de Yowsup, instalada en una Raspberry Pi. El programa interpreta el mensaje, y toma la acción oportuna. Hasta este momento, encender y apagar un relé durante un número de segundos indicado en el mensaje; relé que no se encuentra conectado directamente a la RPi, sino controlado por un chip Attiny85. La RPi, haciendo uso de un emisor de RF de 433 MHz, da las órdenes de encendido y apagado al Attiny85. El Attiny, que se encuentra a la espera de mensajes en un modo de bajo consumo, recibe la señal de interrupción hardware provocada por el receptor de 433 MHz. Sale del modo de bajo consumo, y activa el relé. Posteriormente, bajo otra orden de apagado por parte de la RPi, desactiva el relé y vuelve al modo de bajo consumo.

Teniendo en cuenta que aquí en Irlanda un sistema de riego automático es algo que carece de utilidad (el propio clima es un sistema de riego automático :mrgreen: ), ¿qué se puede querer controlar de manera remota? He aquí la respuesta:

En cuanto a la preocupación por el consumo, éste ha mejorado de manera considerable. El Attiny se encuentra alimentado por una batería de móvil de 2100 mAh, conectada a un panel solar que recarga la batería. Hasta el momento, lleva 4 días funcionando de manera ininterrumpida, y la última medición de la batería indica que la carga es de 3.85v. Un enorme avance con respecto a la anterior versión del reloj de riego de jardín.

VN:F [1.9.20_1166]
Rating: 10.0/10 (1 vote cast)

Etiquetas: , , , ,

12 dic 15 Attiny85: módulo RF a 433 MHz, modo de bajo consumo, y cómo despertarlo con interrupciones

Hace ya bastante tiempo escribí algo acerca de un sistema de riego controlado por WhatsApp que estuve desarrollando. Se basaba en el uso de una Raspberry Pi que actuaba como cerebro del sistema de riego y de comunicaciones, permitiendo el control de todo el sistema mediante mensajería por WhatsApp. La Raspberry, a su vez, se comunicaba con los los relojes de riego mediante módulos de radiofrecuencia a 433 MHz, un sistema de comunicación barato y razonablemente efectivo. En el otro lado, como se comentó en su momento, la válvula de riego se controlaba con un chip Attiny85, programado mediante Arduino.

Como se vio en su momento, el sistema funcionaba razonablemente bien. Sin embargo, varios problemas me llevaron a un callejón sin salida. El principal de ellos, y del que hablaremos hoy, era el consumo del receptor Attiny85. Sobre el papel es un sistema de muy bajo consumo, óptimo para este tipo de funciones. Sin embargo, el sistema de control de la válvula de riego no dejaba demasiado espacio para una batería, así que la alimentación disponible era, como poco, reducida. Pronto se demostró el que el Attiny con el sistema de radiofrecuenca devoraba la batería. Ésta apenas duraba unas 48-72 horas. Y esto, en un sistema que se supone que ha de ser autónomo y con un bajo mantenimiento, era sencillamente inaceptable, sobre todo si lo comparamos con relojes de riego de jardón convencionales, que con un par de pilas AA o una pila cuadrada de 9v pueden funcionar de manera ininterrupida durante meses.

Probé varias soluciones, desde el uso inicial de una batería recargable de 9v hasta el uso de un panel solar con una batería de móvil incorporada. Éste último caso consiguió producir mejoras, llegando el sistema a funcionar durante una semana de manera ininterrumpida. Pero en cualquier caso, no era una gran mejora. Tocaba afrontar el problema de base: un exceso de consumo.

Batería cuadrada de 9v y panel solar con regulador

Batería cuadrada de 9v y panel solar con regulador

En efecto, el problema estaba provocado por un exceso de consumo. Tal y como estaba diseñado, el sistema estaba permanentemente a la escucha de señales por RF, en un bucle sin fin, dado que la señal de encender o apagar la válvula de riego podía darse en cualquier momento. Esta aproximación era, como poco, inadecuada desde el punto de vista del consumo.

Para mejorar esto, probé varias alternativas: desde emitir sólo en determinadas ventanas de tiempo, hasta desconectar la alimentación al módulo de radiofrencuencia y activarlo sólo durante varios segundos cada minuto. Opciones bastante malas, la verdad, ya que se basaban en la precisión de un reloj interno que, como es conocido, no es un prodigio de la precisión.

Otra posibilidad hubiera podido ser un método en el que el Attiny consultara a la Raspberry si había algún comando por ejecutar. Pero por desgracia, los módulos RF de 433 MHz son unidireccionales, por lo que hubiera sido preciso incorporar un emisor al Attiny y un receptor a la Raspberry, complicando de manera innecesaria todo el sistema. Finalmente, la solución vino de mano de dos elementos presentes en el Attiny. El modo sleep y el uso de interrupciones.

El Attiny85 dispone de varios modos de bajo consumo (sleep mode) que sirven para reducir el consumo del chip cuando está a la espera de algún evento. En el caso del Attiny85, puede reducir el consumo hasta en un 90%. Pero no se trataba sólo de dormir al chip, sino de ser capaz de despertarlo cuando se recibiera una recepción de datos en el módulo de RF. Y para ello, nos encontramos con las interrupciones.

Las interrupciones son eventos que provocan un cambio en el estado de reposo o ejecución de un programa -en este caso, un programa cargado en el Attiny85-. Hay interrupciones tanto hardware como software, siendo las hardware las provocadas por un evento externo al programa en sí. Dentro de las interrupciones hardware, en el caso de Arduino, podemos distinguir las interrupciones Externas, y las provocadas por un Cambio en el Pin. El nombre es un poco confuso, pues ambas son externas al chip en sí, pero mientras las Externas están limitadas a un número concreto de patillas en el chip, las de Cambio en Pin pueden ocurrir en cualquiera de las patillas. En el caso concreto del Attiny85, las Externas sólo se producen en el Pin2 (INT0, patilla 7), mientras que las de Cambio en Chip se pueden producir en cualquier otra patilla.

De hecho, es factible despertar al Attiny85 del modo de bajo consumo mediante el uso de interrupciones. En el caso concreto del artículo enlazado, se usa el Pin3 (patilla 7) -luego se usa el modo de Cambio de Pin- para despertar al chip del modo de bajo consumo, como he podido comprobar personalmente (el ejemplo se basa en el uso de un botón conectado a 5v). Sin embargo, a la hora de probarlo con el módulo de RF a 433 MHz el sistema no funcionaba. No era capaz de realizar cambios en el sistema.

A modo de recordatorio, el sistema de control de la válvula consiste básicamente en un relé que activa o desactiva la válvula en función del tiempo que se desea mantener activo el riego. Este relé está controlado por una de las patillas del Attiny, protegida mediante un optoacoplador.

Tras varias pruebas, pude averiguar que el problema estaba causado por una particularidad en el receptor del módulo RF. Sólo he sido capaz de hacerlo comunicar con el chip Attiny a través del del pin de Interrupción Externa (Pin2, INT0), por lo que el ejemplo referenciado anteriormente no resultaba válido. En mi caso, ha sido necesario hacer uso de la patilla INT0:

#include
#include
#include

RCSwitch mySwitch = RCSwitch();
const int rele = 4;
const int dataPin = 0; //INT0, PCINT2
void setup() {
pinMode(dataPin, INPUT);
digitalWrite(dataPin, HIGH);
pinMode(rele, INPUT);
mySwitch.enableReceive(dataPin);

// Flash quick sequence so we know setup has started
for (int k = 0; k < 10; k = k + 1) {
if (k % 2 == 0) {
pinMode(rele, OUTPUT);
}
else {
pinMode(rele, INPUT);
}
delay(250);
} // for
}

void sleep() {

GIMSK |= _BV(PCIE); // Enable Pin Change Interrupts
PCMSK |= _BV(PCINT2); // Use PB3 as interrupt pin
ADCSRA &= ~_BV(ADEN); // ADC off
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // replaces above statement

sleep_enable(); // Sets the Sleep Enable bit in the MCUCR Register (SE BIT)
sei(); // Enable interrupts
sleep_cpu(); // sleep

cli(); // Disable interrupts
PCMSK &= ~_BV(PCINT2); // Turn off PB2 as interrupt pin
sleep_disable(); // Clear SE bit
ADCSRA |= _BV(ADEN); // ADC on

sei(); // Enable interrupts
} // sleep

ISR(PCINT0_vect) {
// This is called when the interrupt occurs, but I don't need to do anything in it
}

void loop() {

if (mySwitch.available()) {

sleep();
int value = mySwitch.getReceivedValue();

if (value == 0) {
// Serial.print("Unknown encoding");
} else {

pinMode(rele,OUTPUT);
delay(10000);
pinMode(rele,INPUT);
}
mySwitch.resetAvailable();
}
}

(Explicación rápida del ejemplo: Se declaran INT0 como receptor de RF, y el Pin4 como control del relé. Se realiza un ciclo de encendido y apagado del relé al inicio para mostrar que el programa ha iniciado, se declara la interrupción del modo de bajo consumo con INT0, y se pasa al bucle principal. Se espera a una interrupción, se comprueba que la señal RF recibida es correcta, y se enciende el relé durante 10 segundos)

Resultado: ¡éxito! No sólo el sistema funciona, sino que he podido comprobar una gran mejora en el consumo del sistema. Durante la fase activa del programa, en la que el relé está activo y se ha recibido la señal de radiofrecuencia, todo el sistema consume unos 9 mA. Cuando está en modo de bajo consumo, a la espera de recibir la señal, baja a niveles inferiores a 1 mA.

VN:F [1.9.20_1166]
Rating: 0.0/10 (0 votes cast)

Etiquetas: , , , ,